Micro-structural changes and helium release in thin films of Er(D,T)₂

Hydrogen and Helium Isotopes in Materials February, 2007

Clark Snow, Jim Browning, Mark Rodriguez, Luke Brewer, Jim Banks, and Jim Knapp SNL/NM Dept. 2725

What do we want to learn from this study?

- Changes in micro-structure of films with age
 - $Er(DT)_{2+x}He_x$ what changes are caused by the decay of tritium?
 - How is the helium stored/released in the film?

- Changes in micro-structure with film thickness
 - Deposition thickness can change by 10% depending on which "ring" of evaporator.
 - Can we learn where helium is being released from?

How the samples were prepared and stored.

- Samples were evaporated by e-beam vapor deposition.
 - Molybdenum substrate.
 - Substrate temperature 450C.
 - Deposition rate 10Å/s.
 - 5000Å, 4000Å, 3000Å, 2000Å, and 1000Å thick Er films.
 - Hydrided after bringing to elevated temperatures.
 - Not all films usable, probably because of substrate contamination.
- Films immediately made into neutron tubes high vacuum ceramic envelopes.
 - UHV conditions in envelopes.
 - These neutron tubes were not operated.

TEM images show that the film has a columnar structure

Films of all thicknesses show similar columnar grains.

5000Å 1000Å

The columnar grains fit the growth model of Savaloni and Player.

Changes in film texture with film thickness.

• XRD 2-theta scan for 5000Å Er(DT)₂ film.

Close up view of the oxide and ErH₂ diffraction lines as a function of film thickness.

- Texture changes with film thickness
- The thicker the film shows a stronger (111) in plane texture.

 • The thinner the film,
- the less oxide.

Pole figures show the change in film texture with film thickness.

TEM shows very large oxide inclusions

 All films show large oxide inclusions that often span the film thickness.

Not only is the inclusion oxygen rich but it has the crystal structure of Er₂O₃

 Diffraction spots index well to the crystal structure of Er₂O₃

The oxide surface layer also varies with film thickness.

- Oxide layer was measured by IBA.
- Correlated to peak intensity of XRD.
- Bulk oxygen, determined by IBA, similar in all samples.

What is the origin of the mysterious secondary spot pattern seen in TEM?

- Secondary spot pattern seen in all of the films.
 - g1 and g2 d-spacings are 7.3Å and 7.4Å respectively.

Bright field/Dark field image pairs corresponding to the contrast from the secondary spots

- Bright field/Dark field image pairs.
- 5-10 nm objects dispersed throughout film.

The secondary spots index closely to ErH₂ and Er₂O₃

g	ErH ₂ {hkl}/d(Å)	ErH ₃ {hkl}/d(Å)	Er ₂ O ₃ {hkl}/d(Å)	Er {hkl}/d(Å)	Er(OH) ₃ {hkl}/d(Å)	ErO(OH) {hkl}/d(Å)
7.3 Å	{100}/5.15	{110}/5.41	{200}/5.27	{100}/3.08	{100}/5.41	{100}/5.62
7.4Å	{110}/3.64	{002}/3.26	{110}/7.45	{002}/2.80	{110}/3.12	{001}/4.06
	{111}/2.97		{222}/3.04			
			{220}/3.73			
	2*{110}/7.28					

Calculated SAED patterns for zone axis of Er₂O₃ show the ErH₂ overlap

 Red arrow shows double diffraction between (002) and (1-1-2) which results in appearance of (1-10).

A summary of what we have learned about the "real" film micro-structure

- The films are textured (111) out-of-plane
- The films have columnar grains.
- The films have large oxide particles.
- The films have an even dispersal of 5-10 nm oxide particles.

All of these films exhibit lenticular helium bubbles

- Note lenticular bubbles and "denuded zone" or "bubble free zone".
- All films show an average bubble length of ~10nm with a bubble volume density of ~5x10¹⁷/cm³

5000Å

The "denuded zone" is constant.

 "denuded zone" is very constant at ~15nm for every sample in this study.

1000Å

How does the helium release amount vary with film thickness?

- Total amount of helium released is fairly constant.
- ARF=(amt. He released)/(amt. He generated)
- ARF varies inversely with time.

How to understand the variation of helium release with film thickness.

- The helium is not being released from simple bulk diffusion.
- Instead, helium appears to only be originating from the near surface.

What I want you to take away from this presentation.

- What is the real ErH₂ film micro-structure.
 - Columnar grains
 - Texture-(111) out-of-plane
 - Oxide inclusions
 - Small oxide particulates
- How the helium behaves in the film.
 - Lenticular bubbles
 - Denuded zone
 - Constant helium release from near the film surface.

